Crystal structure of enantiomerically pure bis(dimethylbicyclooctylcyclopentadienyl) zirconium dichloride

Ronald L. Halterman *, Zhouliang Chen
Department of Chemistry and Biochemistry, The University of Oklahoma, 620 Parrington Oval, Norman, OK 73019-0370, USA

Received 19 December 1994; in revised form 7 February 1995

Abstract

The enantiomerically pure C_{2}-symmetrical (DMeBCOCp$)_{2} \mathrm{ZrCl}_{2}$ complex (+)-3 was synthesized from enantiomerically pure (-)-DMeBCOCp ligand (-)-1. Zirconocene (+)-3 was recrystallized from toluene to provide single crystals suitable for X-ray diffraction. The unit cell contained two conformationally similar molecules in the monoclinic space group $\mathrm{P} 2_{1}(\# 4), a=7.288(4) \AA$, $b=18.980(2) \AA, c=17.612(3) \AA, \beta=91.43(2)^{\circ}, V=2436(1) \AA^{3}, Z=4$. Of the 7247 unique reflections, 5691 observed reflections (3σ or greater) were refined to give a final $R=0.048$ and $R w=0.061$. The cyclopentadienyl substituents are arranged in a roughly C_{2}-symmetrical orientation and the cyclopentadienyl carbons are close to a synclinal orientation.

Keywords: Zirconocene; Chiral; Metallocene; Crystal structure; Cyclopentadienyl; C_{2}-symmetricai

1. Introduction

In the past several years an impressive number of new chiral metallocene complexes have been reported [1]. While chiral ansa-metallocenes are more common [1,2], recent interest is being focused on conformational mobility in unbridged zirconocene catalysts for propene polymerization [3]. Such complexes can switch between C_{2}-symmetrical and unsymmetrical conformations, leading to potentially interesting reactivity. By utilizing hindered chiral unbridged complexes, a particular conformation may be favored and the rate of conformational switching may be altered, which could lead to selective and novel reactivity. One example is the high enantioselectivity exhibited by a bis(diphenylbicyclooctylcyclopentadienyl)titanium complex in catalyzing enantioselective hydrogenations [5]. We have previously reported the synthesis and crystal structure of a second BCOCp-titanium complex, the bis(dimethylbicyclooctylcyclopentadienyl)titanium dichloride 2 [6]. However, no crystal structures of analogous zirconium complexes have been reported. Given the interest in un-

[^0]bridged zirconocene complexes and the desire to learn more about their conformational preferences, we have isolated single crystals of enantiomerically pure bis(dimethylbicyclooctylcyclopentadienyl)zirconium dichioride (+)-3 and now report its X -ray diffraction-derived crystal structure.

2. Zirconium complexes

The enantiomerically pure C_{2}-symmetrical (DMeB$\mathrm{COCp})_{2} \mathrm{ZrCl}_{2}$ complex (+)-3 was synthesized from enantiomerically pure (-)-DMeBCOCp ligand (-)-1 following our published procedure to give white-yellow crystals of zirconium complex (+)-3 [6]. Since the metalation was performed on a single enantiomer of the DMeBCOCp ligand, only a single C_{2}-symmetric isomer could be formed. Single crystals were obtained by the slow evaporation of a toluene solution of zirconocene $(+)-\mathbf{3}$, and their X-ray diffraction data were measured. A summary of the data collection and refinement values is given in Table 1. Selected bond lengths, bond angles, torsion angles and positional parameters are given in Tables 2-5.

The non-centrosymmetric monoclinic unit cell ($\mathbf{P} 2_{1}$) of enantiomerically pure zirconium complex (+)-3 con-

Table 1
Summary of crystallographic data for $(+)-(\mathrm{DMeBCOCp})_{2}-$ $\mathrm{ZrCl}_{2}(+)$-(3)

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{Zr}$
F.W.	508.68
Cryst syst	Monoclinic
Space group	P2 ${ }_{1}$ (\#4)
Cryst size (mm)	$0.20 \times 0.10 \times 0.06$
Cryst color, habit	Colorless, plate
Cell dimens	25 rflns, $25^{\circ} \leq 2 \theta \leq 50^{\circ}$
$a(\AA)$	7.288(4)
$b(\AA)$	18.980(2)
c (A)	17.612(3)
β (deg)	91.43 (2)
$V\left(\AA^{3}\right)$	2436.3(1.3)
Z	4
d (calc) $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.387
Abs coeff (cm^{-1})	58.77
T (K)	293
Diffractometer	Rigaku AFC5R
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178$ ¢ $)$
Monochromator	Graphite
Scan limit (deg)	$5 \leq 2 \theta \leq 120$
Scan speed (deg min ${ }^{-1}$)	32
Data collected	$h 0 \sim 8, k \pm 21, l \pm 20$
No. of frlns collected	7884
No. of unique rflns	7247
No. of obs. reflns ($\geq 3 \boldsymbol{\sigma}$)	5691
Rint	0.036
Abs cor (trans. factors)	0.61-1.00
Structure soln	Direct method (TEXSAN)
Refinement	Least squares
R	0.048
Rw	0.061
GOF	2.17
Max param shift/esd	0.13
Max resid e density (e \AA^{-3})	1.13 (-1.03)

tained two crystallographically independent but conformationally similar molecules; Fig. 1 shows an ORTEP of one of the molecules. Similar to the case of the
titanium complex (-)-2, the DMeBCOCp ligands in each of the independent molecules of complex (+)-3 adopt a synclinal arrangement, with the shortest intramolecular contacts lying between $C(2)-C(15)$ (3.267 $\AA), C(2)-C(16)(3.298 \AA)$ and $C(3)-C(15)(3.407 \AA)$, and the bicyclooctane moieties are oriented in a nearly C_{2}-symmetrical conformation, with the methyl groups on the bicyclooctane framework located away from the chlorine ligands. The $\mathrm{Zr}-\mathrm{C}\left(\eta^{5}\right)$ distances fall in the range of $2.44-2.66 \AA$, with the same variation order as in the titanium complex (-)-2. The bicyclooctane framework is bent away from the ZrCl_{2} moiety and is distorted, though to a lesser extent than the titanium complex (-)-2 (bonds $C(6)-C(7)$ or $C(1)-C(2)$ out of the attached Cp plane by 14.4 or 23°; angles $\mathrm{C}(6)-$ $C(7)-C(11)=108.6^{\circ}$ and $C(2)-C(1)-C(10)=114.4^{\circ}$ for 3 vs. $C(6)-C(7)-C(8)=104.7^{\circ}$ and $C(2)-C(1)-$ $C(9)=101.5^{\circ}$; torsion angles $C(7)-C(11)-C(10)-C(13)$ $=-147^{\circ}$ vs. $\left.\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(12)=-142^{\circ}\right)$ for 2 . The $\mathrm{Cl}-\mathrm{Zr}-\mathrm{Cl}$ angle (94.1°) is quite normal. Both cyclopentadienyl rings in (+)-3 encompass coplanar ring carbons with a deviation of less than 1°, but the substituted carbon- Zr distances in one of the cyclopentadienyl rings are substantially different $(\mathrm{C}(15)$ at $2.58 \AA$ and $\mathrm{C}(19)$ at $2.66 \AA$). These diminished structural variations relative to titanium complex 2 are in keeping with the longer $\mathrm{Zr}-\mathrm{C}\left(\eta^{5}\right)$ bond which should result in less steric hindrance between the ZrCl_{2} and the BOCp moieties.

An interesting feature of this structure is that the orientation of the bicyclooctane rings in $(+)-3$ is quite similar to the C_{2}-symmetric orientation of the rings in an ansa-metallocene, ethano-bridged bis(tetrahydroindenyl)zirconium dichloride [7]. Owing to the lack of coalescence in the low temperature ${ }^{1} \mathrm{H}$ NMR specta of 3 , no evidence for multiple static conformations of 3 was found. The structural information presented here should aid in the interpretation of future stereoselective reactions of $(+)-3$.

$\frac{(1){ }^{n} \mathrm{BuLi}^{2}}{\text { (2) } \mathrm{TiCl}_{3}}$
(3) HCl , air, CHCl_{3}
$(-)-1$

$\xrightarrow[\text { (2) } \mathrm{ZrCl}_{4} / \text { reflux } / 12 \mathrm{~h}]{\text { (1) }{ }^{\mathrm{h}} \mathrm{BuLi}, \text { DME }}$
(-)-1

(-)-2

$(-)-3$

Table 2
Selected bond lenghts for (+)-3

Atom	Atom	Distance
ZR	CL1	$2.446(3)$
ZR	CL2	$2.439(3)$
ZR	C2	$2.605(9)$
ZR	C3	$2.499(9)$
ZR	C4	$2.436(8)$
ZR	C5	$2.492(3)$
ZR	C6	$2.604(9)$
ZR	C15	$2.582(9)$
ZR	C16	$2.487(9)$
ZR	C17	$2.443(9)$
ZR	C18	$2.523(9)$
ZR	C19	$2.659(8)$
C1	C2	$1.5361)$
C1	C9	$1.56(1)$
C1	C10	$1.54(1)$
C2	C3	$1.38(1)$
C3	C4	$1.42(1)$
C4	C5	$1.39(1)$
C5	C6	$1.49(1)$
C6	C7	$1.49(1)$
C7	C11	$1.53(2)$
C14	C15	$1.53(1)$
C14	C22	$1.53(1)$
C14	C23	$1.52(1)$
C15	C16	$1.40(1)$
C15	C19	$1.42(1)$
C16	C17	$1.43(1)$
C17	C18	$1.43(1)$
C18	C19	$1.40(1)$
C19	C20	$1.49(1)$
C20	C21	$1.54(1)$
C20	C24	$1.52(1)$
ZR(B)	CL1(B)	$2.437(3)$
ZR(B)	CL2(B)	$2.433(3)$
ZR(B)	C2(B)	$2.586(8)$
ZR(B)	C3(B)	$2.487(7)$
ZR(B)	C4(B)	$2.427(8)$
ZR(B)	C5(B)	$2.517(8)$
ZR(B)	C6(B)	$2.616(8)$
ZR(B)	C15(B)	$2.616(8)$
ZR(B)	C16(B)	$2.509(8)$
ZR(B)	C17(B)	$2.448(8)$
ZR(B)	C18(B)	$2.486(9)$
ZR(B)	C19(B)	$2.598(8)$

Table 3
Selected bond angles for (+)-3

Atoms			Angle
1	2	3	
CL1	ZR	CL2	$94.1(1)$
C2	ZR	C19	$129.9(3)$
C3	ZR	C18	$134.4(3)$
C4	ZR	C17	$145.5(3)$
C5	ZR	C16	$132.1(3)$
C6	ZR	C15	$129.7(3)$
C2	C1	C9	$101.5(7)$
C2	C1	C10	$114.4(8)$
C9	C1	C10	$106.5(8)$
C1	C2	C3	$132.8(8)$
C1	C2	C6	$112.9(8)$
C3	C2	C6	$108.6(8)$
C2	C3	C4	$108.4(8)$
C3	C4	C5	$106.4(8)$
C4	C5	C6	$108.9(8)$
C2	C6	C5	$107.6(8)$
C2	C6	C7	$114.8(8)$
C6	C6	C7	$135.4(8)$
C6	C7	C8	$104.7(8)$
C6	C7	C11	$108.6(8)$
C8	C7	C11	$107.5(1)$
C7	C8	C12	$114(1)$
C1	C10	C13	$114.8(8)$
CL1(B)	ZR(B)	CL2(B)	$93.0(2)$
CL2(B)	ZR(B)	C19(B)	$131.0(2)$
CL3(B)	ZR(B)	C18(B)	$132.6(3)$
CL4(B)	ZR(B)	C17(B)	$144.1(3)$
CL5(B)	ZR(B)	C16(B)	$135.3(3)$
CL6(B)	ZR(B)	C15(B)	$130.6(2)$

3. Experimental details

3.1. (+)-Bis-[(1S,7S,8R,10R)-8,10-dimethyltricyclo-[5.2.2.02,6]- 2,5-undecadienyllzirconium dichloride [(+)-(DMeBCOCp)2ZrCl2, (+)-3] [6]

To DMeBCOCp diene (-)-1 ($348 \mathrm{mg}, 2 \mathrm{mmol}$) in DME (10 ml) in a 25 ml flask was added dropwise at

Table 4
Selected torison angles for (+)-3

Atoms				Angle	Atoms				Angle
1	2	3	4		1	2	3	4	
C1	C2	C6	C5	157.0(8)	C2	C6	C5	C4	0 (1)
C3	C2	C6	C7	-165.6(8)	C4	C3	C2	C6	$0(1)$
C1	C9	C8	C12	-142(1)	C18	C17	C16	C15	1(1)
C7	C11	C10	C13	-147(1)	C16	C17	C18	C19	1(1)

Table 5
Positional parameters and $B(\mathrm{eq})$ for $(+)-3$

Atom	\boldsymbol{x}	y	z	B (eq)
$\overline{\mathrm{Zr}}$	0.32587(8)	0.6458	0.2146(4)	5.23(3)
$\mathrm{Cl}(1)$	$0.1422(4)$	0.6924(1)	0.1076(2)	8.8(2)
$\mathrm{Cl}(2)$	$0.0595(4)$	0.6111(2)	0.2867(2)	9.8(2)
C(1)	0.662(1)	0.6871(5)	$0.3861(5)$	6.15)
C(2)	0.545(1)	0.7038(4)	0.3154(5)	4.7(4)
C(3)	0.587(1)	0.7273(4)	$0.2441(5)$	4.7(4)
C(4)	0.436(1)	0.7669(4)	$0.2146(5)$	4.9(4)
C(5)	0.304(1)	0.7660(4)	0.2701(6)	5.9(5)
C(6)	0.370(1)	0.7273(4)	0.3323(6)	5.5(4)
C(7)	0.323(1)	0.7215(6)	0.4141(6)	$7.1(6)$
C(8)	0.458(2)	0.7731(6)	0.4564(6)	7.4(6)
C(9)	0.660 (2)	0.7592(6)	0.4290(6)	7.3(6)
C(10)	0.578(1)	0.6325(6)	0.4396(5)	$7.1(5)$
C(11)	0.368(1)	0.6466(8)	$0.4417(6)$	8.7(6)
C(12)	0.404(2)	0.8501 (7)	0.4502(7)	9.2(7)
C(13)	0.623(2)	0.5569(7)	0.4219(6)	8.9(7)
C(14)	$0.710(1)$	0.5875(5)	0.0801(5)	$5.1(4)$
C(15)	0.566(1)	0.5758(4)	0.1399(5)	4.8(4)
C(16)	0.576 (1)	0.5568(4)	0.2169(5)	4.4(4)
C(17)	0.408(2)	0.5224(5)	0.2354(6)	6.0(5)
C(18)	$0.301(1)$	$0.5208(4)$	0.1663 (7)	5.9(5)
C(19)	$0.397(1)$	0.5516(4)	$0.1072(5)$	4.9(4)
C(20)	0.395(1)	0.5483(5)	0.0224(6)	$6.7(5)$
C(21)	0.542(2)	0.4924(5)	$0.0052(5)$	6.8(5)
C(22)	$0.724(1)$	0.5150(5)	0.0447(5)	6.1(5)
C(23)	$0.648(1)$	$0.6384(6)$	$0.0178(4)$	5.9(4)
C(24)	0.455(1)	$0.6176(5)$	-0.0124(6)	6.9(5)
C(25)	0.489(2)	0.4166(6)	0.0274(8)	9.5(8)
C(26)	$0.656(1)$	0.7161(5)	$0.0375(7)$	7.1(6)
$\mathrm{Zr}(\mathrm{B})$)	-0.10444(8)	0.63992 (6)	0.72727(4)	4.90(3)
Cl(1(B))	$-0.3002(4)$	0.5702(2)	0.6420(2)	10.2(2)
$\mathrm{Cl}(2(\mathrm{~B}))$	$-0.3642(4)$	$0.6900(2)$	0.7925 (2)	10.7(2)
C(1(B))	0.274(1)	0.4973(5)	0.7300(6)	5.8(5)
C(2(B))	$0.138(1)$	0.5458(4)	$0.7650(5)$	4.4(4)
C(3(B))	0.157(1)	0.6046(4)	$0.8123(5)$	4.6(4)
C(4(B))	$-0.006(1)$	0.6075(4)	0.8552(5)	5.4(4)
C(5(B))	-0.121(1)	$0.5516(5)$	0.8335(5)	5.6(5)
C(6) ${ }^{\text {(})}$)	-0.030(1)	0.5130(4)	0.7773(5)	4.7(4)
C(7(B))	-0.044(1)	0.4379(5)	$0.7518(6)$	6.2(5)
C(8(B))	$0.101(2)$	0.3985(5)	$0.7966(7)$	7.4(6)
$\mathrm{C}(\mathrm{P}(\mathrm{B})$)	0.289 (1)	0.4363(5)	0.7876(7)	7.7(6)
$\mathrm{C}(10(\mathrm{~B})$)	0.204(2)	0.4627(5)	$0.6558(7)$	7.7(6)
C(11(B))	0.008(2)	$0.4336(6)$	$0.6658(7)$	7.8 (6)
C(12(B))	0.044(2)	$0.3871(6)$	0.8785(8)	$9.5(8)$
C(13(B))	0.217(2)	0.5109(7)	0.5861(6)	8.4(7)
C(14(B))	-0.117(2)	0.8399(6)	0.7281(6)	$7.3(6)$
C(15(B))	-0.068(1)	0.7717(4)	$0.6907(5)$	5.0(4)
C(16(B))	-0.142(1)	0.7352(5)	0.6312(6)	5.9(5)
C(17(B))	-0.001(1)	0.6872(5)	$0.6063(5)$	5.5(4)
C(18(B))	0.149(1)	0.6954(4)	$0.6543(5)$	$5.2(4)$
C(19(B))	0.110(1)	0.7490(4)	0.7090(5)	$4.7(4)$
C(20(B))	0.226(1)	0.8008(5)	0.7501(6)	6.3(5)
C(21(B))	0.142(2)	0.8262(5)	0.8251(7)	8.6 (7)
C(22(B))	-0.067(2)	0.8355(6)	0.8147(7)	$9.2(8)$
C(23(B))	0.013(2)	0.8941(5)	0.6924(8)	$8.9(8)$
C(24(B))	0.213(2)	0.8664(5)	0.6949(8)	8.6 (7)
$\mathrm{C}(25$ (B))	0.187(2)	0.7803(5)	$0.8935(6)$	8.6(7)
C(26(B))	-0.042(2)	$0.9136(6)$	0.6104(8)	10.0(8)

Fig. 1. ORTEP of $(+)-3$ (50% probability elipsoids). Halterman and Chen structure of (DiMeBCOCp) ${ }_{2} \mathrm{ZrCl}_{2}$.
$-78^{\circ} \mathrm{C} n$-butyl lithium (2.2 M in hexane, $1 \mathrm{ml}, 2.2$ mmol). The resulting mixture was allowed to rise to $0^{\circ} \mathrm{C}$ and stirred for 30 min , then at room temperature for another 30 min to afford a pink slurry. To a second 50 ml flask containing $\mathrm{ZrCl}_{4}(234 \mathrm{mg}, 1 \mathrm{mmol}$), was added at $0^{\circ} \mathrm{C}$ the precooled $\left(0^{\circ} \mathrm{C}\right)$ lithio salt solution. The resulting yellow slurry was heated at reflux for 12 h . Upon being cooled to room temperature, the solvent was removed in vacuo to give a yellow residue which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{ml})$. Removal of the solvent from the filtrate via rotary evaporation gave a yellow-orange solid (515 mg). A portion (121 mg) of the crude product was sublimed (10^{-4} Torr, $175^{\circ} \mathrm{C}$, dry ice-acetone cooling) to afford (+)-3 as yellow crystals ($77 \mathrm{mg}, 64.5 \%$ as the reaction yield): m.p. $229-230^{\circ} \mathrm{C}$. $[\alpha] \mathrm{D}^{22}+138^{\circ}\left(\mathrm{c} 0.555, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr): 2920 , 2860, 1450, 1375, 1150, 1030, 880, 830, $805 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.23(\mathrm{~m}, 4 \mathrm{H}), 6.10(\mathrm{~m}, 2$ H), 2.93 (br s, 2 H), 2.77 (br s, 2 H), 1.98 (m, 4 H), $1.85(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$, $0.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.20(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.61,132.70,117.85,111.82$, $107.85,42.88,40.39,39.03,34.50,32.33,31.04,21.74$, 20.91. MS: m / z (EI, 70 eV , rel. intensity) $510\left(\mathrm{M}^{+}+4\right.$, $12 \%), 509\left(\mathrm{M}^{+}+3,7\right), 508\left(\mathrm{M}^{+}+2,18\right), 507\left(\mathrm{M}^{+}+1\right.$, 8), $506\left(\mathrm{M}^{+}, 16\right), 475(7), 474(6), 473$ (13), 472 (10), 471 (18), 337 (64), 336 (25), 335 (100), 334 (33), 333 (98). HRMS ($\mathrm{EI}, 70 \mathrm{eV}$) calc. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{ZrCl}_{2}$
506.1081, found 506.1077. Anal. Found: C, 61.37, H, 6.74. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{ZrCl}_{2}$. Calc.: C, 61.24; H, 6.75.

3.2. X-Ray structure determination of (+)-3

Suitable single crystals were grown from toluene by slow evaporation to give zirconocene dichloride 3 as yellow crystals. The intensity data were obtained at $20^{\circ} \mathrm{C}$ with a Rigaku AFC5R four-circle autodiffractometer system using graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation and a 12 kW rotating-anode generator. The cell constants and an orientation matrix for data collection were obtained from a least-squares refinement using the setting angles of 25 centered reflections in the range $25 \leqslant 2 \theta \leqslant 50$. Scans were made at a speed of 32 deg min^{-1} in omega. The weak reflections ($I \leqslant 10.0 \sigma$) were rescanned (maximum of two rescans). The intensities of three standard reflections were measured after every 150 reflections and remained constant throughout the data collection; no decay correction was applied. The crystallographic calculations were performed by using the texsan program [8]. The data were corrected for Lorentz and polarization effects, and an empirical absorption correction was applied. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included in calculated positions for the final full-matrix least-squares refinement cycles, but were not refined.

Acknowledgement

We thank the National Institutes of Health (GM 42735) and the Petroleum Research Fund (25999-AC),
administered by the American Chemical Society, for funding this research. We thank Dr. M.A. Khan (University of Oklahoma) for generating the ORTEP drawing.

References

[1] R.L. Halterman, Chem. Rev., 92 (1992) 965.
[2] (a) M. Burk, S.L. Colletti and R.L. Halterman, Organometallics, 10 (1991) 2998; (b) Z. Chen and R.L. Halterman, J. Am. Chem. Soc., 114 (1992) 2276; (c) Z. Chen and R.L. Halterman, Organometallics, 13 (1994) 3932; (d) A.L. Rheingold, N.P. Robinson, J. Whelan and B. Bosnich, Organometallics, 11 (1992) 1869; (e) T.K. Iollis, A.L. Rheingold, N.P. Robinson, J. Whelan and B. Bosnich, Organometallics, 11 (1992) 2812; (f) M.S. Erickson, F.R. Fronczek and M.L. McLaughlin, J. Organomet. Chem., 415 (1991) 75; (g) J.A. Bandy, M.L.H. Green, I.M. Gardiner and K. Prout, J. Chem. Soc., Dalton Trans. (1991) 2207; (h) R.B. Grossman, J.-C. Tsai, W.M. Davis, A. Gutiérrez and S.L. Buchwald, Organometallics, 13 (1994) 3892.
[3] G. Erker, M. Aulbach, M. Knickmeier, D. Wingermühle, C. Krüger, M. Nolte and S. Werner, J. Am. Chem. Soc., 115 (1993) 4590.
[4] G. Erker, M. Aulbach, C. Krüger and S. Werner, J. Organomet. Chem., 450 (1993) 1.
[5] R.L. Halterman, K.P.C. Vollhardt, M.E. Welker, D. Bläser and R. Boese, J. Am. Chem. Soc., 109 (1987) 8105.
[6] Z. Chen, K. Eriks and R.L. Halterman, Organometallics, 16 (1991) 3449.
[7] (a) F.R.W.P. Wild, M. Wasiucionek, G. Huttner and H.H. Brintzinger, J. Organomet. Chem., 288 (1985) 63; (b) S. Collins, B.A. Kuntz, N.J. Taylor and D.G. Ward, J. Organomet. Chem., 342 (1988) 21.
[8] TEXSAN Program, Texray Structurc Analysis Package, Molecular Structure Corp., 1985.

[^0]: * Corresponding author.

